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ABSTRACT

Arnold and co-workers (1996) developed a quantitative model of mating preference, the triple
Gaussian model, which predicts a quadratic relationship between asymmetry in sexual isolation
and evolutionary (behavioural) divergence. They used a salamander mating data set to contrast
this and alternative models (Kaneshiro and mating propensity models) to explain the causes
of asymmetry in sexual isolation. However, they estimated asymmetry in sexual isolation and
behavioural divergence from the same mating pairs, whereas they should have used genetic
divergence to estimate independently the evolutionary divergence (genetic divergence between
the same salamander species was available; Tilley et al., 1990). I show here that their measure
of behavioural divergence is actually an estimate of sexual isolation, and that the quadratic
relationship predicted by their model is also expected whenever asymmetry is unrelated
to sexual isolation. It can be concluded that the triple Gaussian model cannot presently be
distinguished from alternative models.

Keywords: assortative mating, mating behaviour, model testing, reproductive isolation,
sexual isolation.

INTRODUCTION

The significance of asymmetry in sexual isolation has been discussed since the work of
Kaneshiro (1976, 1980). Asymmetry occurs when two races or populations mate at different
rates depending on which race contributes the male or female in the mating pair. Kaneshiro
argued that asymmetry could result if females from a derived population were less
discriminating (due to loss of courtship elements by genetic drive) against ancestral males
than the ancestral females with respect to derived males. However, the Kaneshiro hypothesis
has been criticized from both theoretical (Barton and Charlesworth, 1984) and experi-
mental (reviewed in Arnold et al., 1996) standpoints. There are alternative explanations
for the existence of asymmetry, such as different mating propensities between races (Barton
and Charlesworth, 1984; Ringo et al., 1986), and other asymmetry models may predict
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contrary patterns to the Kaneshiro expectations (see Ringo et al., 1986). On the other hand,
one advantage of the Kaneshiro model is that it is easily testable experimentally, because
it predicts a linear positive correlation between the degree of asymmetry during sexual
isolation and the evolutionary divergence between the populations/races studied.

Arnold et al. (1996) developed a quantitative model of mating preference, based on
Lande’s (1981) model for sexual selection, which is able to produce asymmetry under sexual
isolation. This key study has been cited in more than 40 papers about mate choice and
sexual isolation (ISI Web of Science data base, June 2004). The so-called triple Gaussian
model predicts a quadratic relationship between sexual isolation and evolutionary
divergence (i.e. intermediate divergences show the highest asymmetries). Arnold and
co-workers contrasted the predictions of the triple Gaussian and the Kaneshiro models
using data from an experimental study of sexual isolation on 12 allopatric populations
of the salamander Desmognathus ochrophaeus. They observed a significant quadratic
relationship (supporting the triple Gaussian model) between asymmetry in sexual isolation
and evolutionary divergence among the populations studied. In this note, I show that
they observed, in fact, a quadratic relationship between asymmetry and sexual isolation
(instead of evolutionary divergence), an expected outcome whenever asymmetry and sexual
isolation are unrelated.

THE TEST CASE OF ARNOLD AND CO-WORKERS

The theoretical justifications and details of the triple Gaussian model for mating prefer-
ence are presented elsewhere and will not be reproduced here (see Arnold et al., 1996).
The experimental data set on sexual isolation analysed by Arnold et al. (1996) was
obtained from single encounters (a single-choice design) between a male and a female of
each of two types (A or B). These encounters were tried the same number of trials
(typically 30) in the four possible combinations of sexes and types (producing data as in
a multiple-choice design). In fact, the analysis of multiple-choice data from single-choice
designs is statistically preferable because there is no possibility of biological dependence
between the different pair types. The absolute frequency for each type and sex
(before mating) in these experiments are represented by Am, Af, Bm and Bf in Table 1
(Am = Af = Bm = Bf = 30 in the experiments of Arnold et al., 1996). After a particular
encounter, it can be determined whether the female was inseminated or not, and so the
frequency of the successful (inseminated) copulations gives the numbers of mating pairs aa,
ab, ba and bb in Table 1. The ratio between the observed inseminated mates and the
number of trials allows the calculation of the quantity π (observed incidence of mating).
For example, for the mating pair between males of type A and females of type B, the
observed incidence is

πab =
ab

30
(1)

and accordingly for the other mating pair combinations (πaa, πba and πbb).
Arnold et al. (1996) used the joint isolation index (JI; Merrell, 1950) to estimate the

degree of sexual isolation between populations, which following their notation is

JI = πaa + πbb − πab − πba (2)
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They also estimated the asymmetry during sexual isolation as

IA = | πab − πba | (3)

An important inference from their model is the standardized estimated divergence
between populations (here called ‘behavioural divergence’), which can be calculated
following the authors’ notation as

D/σ = √lnπaa + lnπbb − lnπab − lnπba = �ln� πaaπbb

πabπba
� (4)

It is relevant to emphasize that they estimated both asymmetry during isolation and
behavioural divergence between populations using the same biological information (the
observed incidences of mating). I will discuss below the justifications for using behavioural
divergence as evolutionary divergence in this context.

REANALYSIS OF SEXUAL ISOLATION IN THE TEST CASE

I investigated the adequacy of the statistics used by Arnold et al. (1996) in their analysis.
I will first focus on sexual isolation. A few reviews have dealt with statistics of sexual
isolation (Gilbert and Starmer, 1985; Rolán-Alvarez and Caballero, 2000). These agreed
that the joint isolation index is a bad alternative, as it depends statistically on marginal
frequencies and mating propensities. Presently, one of the best alternatives for estimating
sexual isolation is the IPSI statistic described by Rolán-Alvarez and Caballero (2000). This
statistic is obtained as

IPSI =
PSIaa + PSIbb − PSIab − PSIba

(PSIaa + PSIbb + PSIab + PSIba)
(5)

Table 1. The mating model used for analysis

Females

Males Af Bf

Am aa ab
Bm ba bb

t = aa + ab + ba + bb
S = (Am × Af ) + (Am × Bf ) + (Bm × Af ) + (Bm × Bf )

Note: The absolute frequencies of the two types
studied (population frequencies before mating) are
represented by uppercase letters (Am and Bm for males
and Af and Bf for females). t is the total number of
observed copulating pairs (aa, ab, ba and bb). S is
the total number of expected pairs from population
frequencies.
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where, for example, and following the notation of Table 1,

PSIaa =
(aa)t

(aa + ab)(aa + ba)
(6)

and accordingly for all other PSI statistics. Such an approach has recently been used by
Nossil et al. (2002) for a walking-stick insect. In addition, Rolán-Alvarez and Caballero
(2000) defined the PTI statistics, which for a particular mating pair combination is

PTIab =
(ab)S

(Am × Bf )t
(7)

This statistic includes sexual isolation (PSI) and sexual selection effects (PSS), so that
PTI = PSI × PSS. A compiled basic program to calculate all these statistics (equations 5–7)
is available from http://webs.uvigo.es/c03/webc03/XENETICA/XB2/pti.zip.

The observed incidences of mating (π) used by Arnold et al. (1996) are, in fact,
proportional to the PTI statistics. The relationship in the experiment of Arnold et al.
(1996) is

PTI = π
S

30t
(8)

and so both types of statistics always give identical isolation indexes for the whole data
set. For example, in a study with 30 trials in every combination and with the observed
inseminated pairs in each combination, aa = 30, ab = 10, ba = 20 and bb = 30, the isolation
index I (equation 5) on both types of statistics would be 0.33333. Since the JI and IA
statistics used by Arnold and co-workers (see equations 2 and 3) were calculated using
statistics related to the PTI statistics, they could confound sexual selection (mating
propensity) and sexual isolation effects. This could be particularly inappropriate in this
context, because an alternative explanation for asymmetry in sexual isolation is the indirect
effect of mating propensity on sexual isolation (see Barton and Charlesworth, 1984).

Thus, using the observed incidences of mating presented in table 1 of Arnold et al. (1996),
the behavioural divergences as well as the IPSI and IAPSI statistics (equations 4, 5 and 3,
respectively, but using PSI coefficients instead of π coefficients) could be recalculated. The
behavioural divergence is plotted against the asymmetry (IAPSI) in Fig. 1. Although the
IAPSI statistic should be preferable because it does not confound sexual selection and
isolation effects, the picture is, in fact, similar to the figure 3a of Arnold et al. (1996) using
the IA coefficient on observed incidences of mating (equivalent to PTI).

THE MEANING OF BEHAVIOURAL DIVERGENCE

A different problem is to understand the true meaning of the behavioural divergence
coefficient. Equation (4) is algebraically very similar to the YA isolation index (sensu Ringo
et al., 1986), a rather good alternative for measuring sexual isolation at large sample sizes
(Rolán-Alvarez and Caballero, 2000),

YA =
(√a� − 1)

(√a� + 1)
, where a� =

(πaa)(πbb)

(πab)(πba)
(9)
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suggesting that what Arnold et al. (1996) call behavioural divergence is, in fact, another
estimate of sexual isolation. When the behavioural divergence is plotted against the
JI and the IPSI estimators of sexual isolation (Figs. 2a and 2b, respectively) using data
from Arnold et al. (1996), it can be shown that the behavioural divergence is nearly
identical to the IPSI (more than 99% of the variation is explained by the regression model).
The IPSI and the behavioural divergence coefficient (YA isolation) are better predictors
of isolation than the JI statistics (see also Gilbert and Starmer, 1985; Rolán-Alvarez
and Caballero, 2000), but still the correlation between the joint isolation index and
the behavioural divergence coefficient was high (r = 0.881, n = 26, P < 0.001). Thus, Arnold
and co-workers studied the relationship between an isolation index (JI) and another
one (YA).

The new question is, therefore, what is the expected relationship between sexual isolation
and asymmetry of sexual isolation? There is no such prediction from the Kaneshiro or
the mating propensity hypotheses of asymmetry, but the question is relevant to under-
standing the relationship observed by Arnold and co-workers. The statistical relationship
between these two estimates can be simulated if they are not related (if any level of
asymmetry may occur at any level of sexual isolation). This can be done by applying
a deterministic approach on a data set similar to that in Table 1, given aa values and
bb values equal to 100 and changing ab or ba independently by increments of 10 (from
0 to 100). The 11 values of ab times the 11 values of ba produce 121 different
mating sets. The IPSI and the IAPSI can be calculated for each mating set, and the relation-
ship of these coefficients is presented for the 121 cases in Fig. 3. This should represent
the null hypothesis (absence of relationship between sexual isolation and asymmetry)
against which to check the pattern observed in Fig. 1. Figure 3 shows that the null
hypothesis reveals a quadratic relationship, like the one observed by Arnold et al. (1996) in
the salamander data set (Fig. 1).

Fig. 1. Relationship between the asymmetry of sexual isolation (estimated by IAPSI, see text) and the
behavioural divergence. Estimates obtained from the observed incidences of mating in table 1 of
Arnold et al. (1996). The quadratic best-fit regression curve shown was significant (F = 5.9, n1 = 2,
n2 = 23, P = 0.0157; 30% of the variance in isolation was explained by the quadratic regression model).
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REINTERPRETATION OF THE TEST CASE

Arnold and co-workers studied the relationship between asymmetry during sexual isolation
and behavioural divergence in 12 allopatric populations of salamanders. Contrary to the
Kaneshiro predictions, and in support of their own model, they found a quadratic relation-
ship between behavioural divergence and asymmetry (Fig. 1). The problem is that they
did not estimate asymmetry and behavioural divergence independently. In fact, what
they called behavioural divergence has a correlation close to one with sexual isolation
(see Fig. 2b) and, because of this, they would expect a quadratic relationship between
asymmetry and behavioural divergence (if asymmetry and sexual isolation are not causally
related). This renders meaningless the test used by Arnold and co-workers to reject
alternative models explaining the causes of asymmetry (see Arnold et al., 1996), because

Fig. 2. Relationship between different estimates of sexual isolation [JI from Arnold et al. (1996) and
IPSI from Rolán-Alvarez and Caballero (2000)] and the estimate of behavioural divergence based on
mating behaviour described in Arnold et al. (1996).
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these results fit better with the null hypothesis of the absence of a relationship between
asymmetry and sexual isolation.

The use of genetic distances to estimate evolutionary divergence would be more suitable
for verifying contrasting hypotheses about the evolutionary causes of the asymmetry, in
particular because in this way they are independent estimates. Arnold and co-workers could
have used allozymic data (and hence genetic distances) to obtain evolutionary divergence
estimates between most of the populations studied (see Tilley et al., 1990). A preliminary
analysis using the genetic distances (in ranks) between populations (inferred from the
dendogram of figure 1 of Tilley et al., 1990) showed no relationship between evolutionary
divergence and asymmetry (Kendall rank correlation, τB = −0.027, n = 28, P = 0.852).
However, the alternative model of mating propensity as the cause of the asymmetry
also failed on the salamander data set because it predicts that IAPSI and IAPSS should be
positively correlated, when in fact they are not (r = −0.31, n = 31, P = 0.869).

In summary, the main prediction of the triple Gaussian model outlined by Arnold
and co-workers cannot be properly used to test the Kaneshiro (or mating propensity)
model if sexual isolation is unrelated to evolutionary divergence, because the first model
predicts a quadratic relationship of asymmetry and sexual isolation, while the second
predicts a linear relationship between asymmetry and evolutionary divergence. However,
even if sexual isolation is highly correlated with evolutionary (genetic) divergence,
the triple Gaussian model has the same prediction as the null hypothesis for the
relationship between sexual isolation and asymmetry (compare Figs. 1 and 3). Thus,
any alternative model that predicts no relationship between asymmetry and sexual
isolation would be indistinguishable. For example, this is the case if asymmetry is
randomly allocated (due to experimental errors) in relation to sexual isolation. This means,
in practice, that the triple Gaussian model is of little experimental utility in its present
formulation.

Fig. 3. Relationship between asymmetry (IAPSI) and sexual isolation (IPSI) under the null hypothesis
of no relationship, when all possible values of asymmetry occur for all possible values of isolation
(see text). The quadratic regression was significant (F = 42.9, n1 = 2, n2 = 118, P < 0.001; 42% of the
variance in isolation was explained by the quadratic regression model).
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